Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers

نویسندگان

  • Zhuo Xing
  • Feng Ren
  • Hengyi Wu
  • Liang Wu
  • Xuening Wang
  • Jingli Wang
  • Da Wan
  • Guozhen Zhang
  • Changzhong Jiang
چکیده

Nanostructured Si as the high efficiency photoelectrode material is hard to keep stable in aqueous for water splitting. Capping a passivation layer on the surface of Si is an effective way of protecting from oxidation. However, it is still not clear in the different mechanisms and effects between insulating oxide materials and oxide semiconductor materials as passivation layers. Here, we compare the passivation effects, the photoelectrochemical (PEC) properties, and the corresponding mechanisms between the HfO2/nanoporous-Si and the TiO2/nanoporous-Si by I-V curves, Motte-schottky (MS) curves, and electrochemical impedance spectroscopy (EIS). Although the saturated photocurrent densities of the TiO2/nanoporous Si are lower than that of the HfO2/nanoporous Si, the former is more stable than the later.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3

The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposi...

متن کامل

Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells

Titanium oxide (TiO2) films and TiO2/SiNx stacks have potential in surface passivation, anti-reflection coatings and carrier-selective contact layers for crystalline Si solar cells. A Si wafer, deposited with 8-nm-thick TiO2 film by atomic layer deposition, has a surface recombination velocity as low as 14.93 cm/s at the injection level of 1.0 × 1015 cm−3. However, the performance of silicon su...

متن کامل

Influence of sintering temperature, pressing, and conformal coatings on electron diffusion in electrophoretically deposited porous TiO2

The electrophoretic deposition of nanoporous TiO2 layers allows us to investigate separately the influence of sintering temperature, porosity, and conformal surface coatings on the effective diffusion coefficient Deff of excess electrons in porous layers. Photocurrent transients were measured to obtain Deff in nanoporous TiO2 layers immersed in aqueous electrolyte. The applied treatments contro...

متن کامل

Supersonic aerosol-deposited TiO2 photoelectrodes for photoelectrochemical solar water splitting

Photoelectrochemical (PEC) water-splitting is a promising approach for economical and environmentally friendly hydrogen production. We report here the preparation of nanocrystalline TiO2 films by aerosol deposition (AD) and their performance as photoelectrodes for PEC water splitting. The AD deposited films, 0.5 to 4 mm in thickness, were analyzed to establish the dependence of water splitting ...

متن کامل

Improved photoluminescence and sensing stability of porous silicon nanowires by surface passivation.

Core-shell structured silicon nanowires (Si NWs) were obtained by coating Si NWs with an HfO2 layer. Enhanced photoluminescence (PL) and a slightly decreased PL lifetime are achieved by HfO2 coating. Furthermore, the sensing stability is strongly improved. The improvement of PL properties is interpreted in terms of surface passivation and the Purcell effect.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017